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Exercise 6.22 Show that E(n) (Eq. 6.158) is real, non-negative, with
E(r) = E(—K). (6.175)

Exercise 6.23 Starting from the spectral representation for u(x) (Eq. 6.119),
show that the spectral representation of du;/0xy is

Ou; _ > i (r)etx. (6.176)

Hence show the relations

E)ui 811,]' _ ~
<8mk Oxy > B ; e i (<)

/7/ Kipke®ii(R) dR, (6.177)

and

e = Z 2wk E(k)

= /7/ i’ ®;i(R) dF. (6.178)

6.5 Velocity Spectra

In the previous section, the velocity spectrum tensor ®;;(k,t) is defined (for
homogeneous turbulence) as the Fourier transform of the two-point velocity
correlation R;j(r). (We now use & for the continuous wavenumber vari-
able, in place of Kk used above.) In Section 6.5.1 the properties of ®;;(k,?)
are reviewed and related quantities are introduced, primarily, the energy
spectrum function F(k,t) and the one-dimensional spectra Ej;(k1,t). The
Kolmogorov hypotheses have implications for the forms of these spectra at
high wavenumber (i.e., in the universal equilibrium range). These implica-
tions are presented in Section 6.5.2, and experimentally measured spectra
are presented as further tests of the hypotheses. Section 6.6 describes the en-
ergy cascade in wavenumber space in terms of the energy spectrum function
E(k,t).
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6.5.1 Definitions and Properties

Velocity Spectrum Tensor. In homogeneous turbulence, the two-point
velocity correlation and the velocity spectrum tensor form a Fourier trans-
form pair:

P;i(k) = (2;)3 / 7/ Rjj(r)e " T dr, (6.179)

R;j(r) = / 7/ P (k)e™ T dk. (6.180)

Here k = {k1, K2, kK3} is the (continuous) wavenumber vector; and, to ab-
breviate the notation, the dependence of R;; and ®;; on time is not shown
explicitly. The velocity spectrum tensor ®;;(k) is a complex quantity which
has the properties

@ij(n) = @;i(n) = (I'ji(—h',), (6.181)
and
K,iq)ij(h‘,) = qu)ij(n) =0. (6.182)

Equation (6.181) stems from the symmetry properties of R;;(r) and from
the fact that R;;(r) is real; while Eq. (6.182) is a result of incompressibility
(see Exercise 6.20). In addition ®;;(k) is positive semi-definite, i.e.,

By(k) YY) > 0, (6.183)

for all vectors Y (see Exercise 6.21). It then follows that the diagonal
components of ®;;(k) (i.e., i = j) are real and non-negative, and therefore
so also is the trace:

D;i(k) = D5(k) > 0. (6.184)

The velocity spectrum tensor ®;;(k) is a useful quantity to consider
because (as shown in Section 6.4.3) it represents the Reynolds stress density
in wavenumber space: that is, ®;;(k) is the contribution (per unit volume
in wavenumber space) from the Fourier mode e’ to the Reynolds stress
(ujuj). In particular, setting r = 0 in Eq. (6.180) we obtain

Ri;(0) = (ujuj) = / 7/ ®,;(x) dk. (6.185)
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(Note that ®;; has dimensions of (velocity)?/(wavenumber)?, or equivalently
(velocity)?x (length)?.)

The information contained in ®;;(k) can be considered in three parts.
First, the subscripts (7 and j) give the directions of the velocity in physical
space. So, for example, ®9(k) pertains entirely to the field ua(x). Sec-
ond, the wavenumber direction k/|k| gives the direction in physical space
of the Fourier mode. And third, the wavenumber magnitude determines the
lengthscale of the mode, i.e., £ = 27/|k| (see Fig. 6.8).

Velocity derivative information is also contained in ®;;(x), in particular,

Bui 8uj . 7 B
<3zk 8zg> _ /// ki ®ii () drs, (6.186)

so that the dissipation rate is

€= /Z/ 20K 5 0i(k) dk, (6.187)

(see Exercise 6.23).
The relationship between ®;;(x) and the integral lengthscales is given
below (Egs. 6.210 and 6.213).

Energy Spectrum Function. Being a second-order tensor function of
a vector, ®;;(k) contains a great deal of information. A simpler though
less complete description is provided by the energy spectrum function E(k),
which is a scalar function of a scalar.

The energy spectrum function is obtained from ®;;(k) by removing all
directional information. The information about the direction of the veloci-
ties is removed by considering (half) the trace, i.e., %@,l(n) The information
about the direction of the Fourier modes is removed by integrating over all
wavenumbers k of magnitude |k| = k. To express this mathematically, we
denote by S(k) the sphere in wavenumber space, centered at the origin,
with radius &; and integration over the surface of this sphere is denoted by
$( )dS(k). Thus the energy spectrum function is defined as

BE(k) = f%%(n) dS(x). (6.188)

Alternatively, on account of the sifting property of the Dirac delta function
(see Eq. C.11), an equivalent expression is
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E(k) = /7/ 1®ii(k)0(|k| — k) dr, (6.189)

where £ is here an independent variable (i.e., independent of k).

The properties of E(r) follow straightforwardly from those of ®;;(k):
E(k) is real, non-negative, and for negative x it is undefined according to
Eq. (6.188), or zero according to Eq. (6.189). Integration of E(k) over all
K is the same as integration of $®;;(k) over all k. Thus from Egs. (6.185)
and Eqgs. (6.187) we obtain for the turbulent kinetic energy

k= / E(k)dk, (6.190)
0
and for the dissipation
o
€= / 2wk’ B (k) dk. (6.191)
0

Evidently, E(x) dk is the contribution to k from all wavenumbers k in the
infinitesimal shell s < |k| < k 4+ dx in wavenumber space.

In general, ®;;(k) contains much more information than E(k): but in
isotropic turbulence ®;;(k) is completely determined by E(x). If the turbu-
lence is isotropic, the directional information in ®;;(x) can depend only on
K, and, to within scalar multiples, the only second-order tensors that can
be formed from k are J;; and k;x;. Consequently, in isotropic turbulence,
®;;(k) is given by

(I‘Z‘j(h‘,) = A(F&)(SU + B(H)Hinj, (6.192)
where A(k) and B(k) are scalar functions of k. These scalar functions are
readily determined (see Exercise 6.25), to yield the result that in isotropic
turbulence the velocity spectrum tensor is

Pij(k) = Elx) <f5zxi—m§j>

4Amr2 K
E(xk)
a2 (%)

(6.193)

where Pj;(k) is the projection tensor (Eq. 6.133).

If it is assumed that ®;;(k) is analytic at the origin, then F(k) varies
as k1 for small k (see Exercise 6.26). But it is possible for ®;;(k) to be
non-analytic, with F(k) varying as x? (Saffman 1967) . In direct numeri-
cal simulations both x? and x* behaviors can be obtained (Chasnov 1995).
There are suggestions (e.g., Reynolds 1987) that grid turbulence produces
%2 behavior, but the evidence is not conclusive.
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6.5.2 Kolmogorov Spectra

According to the Kolmogorov hypotheses, in any turbulent flow at suffi-
ciently high Reynolds number, the high-wavenumber portion of the velocity
spectra adopt particular universal forms. This conclusion, and the forms of
the Kolmogorov spectra, can be obtained via two different routes. The impli-
cations of the Kolmogorov hypotheses for the second-order velocity structure
functions are given in Section 6.2 (e.g., Egs. 6.29 and 6.30). The first route
is to obtain the Kolmogorov spectra as the appropriate Fourier transforms
of the structure functions. However, we follow the second route which is
simpler though less rigorous: this is to apply the Kolmogorov hypotheses
directly to the spectra.

Recall that (for any turbulent flow at sufficiently high Reynolds num-
ber) the Kolmogorov hypotheses apply to the velocity field on small length-
scales, specifically in the universal equilibrium range defined by ¢ < £z;. In
wavenumber space the corresponding range is k > kg; = 27 /{g;.

According to the hypothesis of local isotropy, velocity statistics per-
taining to the universal equilibrium range are isotropic. Consequently, for
K > Kpr, the velocity spectrum tensor ®;;(k) is given in terms of the energy
spectrum function E(x) by Eq. (6.193); and the isotropic relations between
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E11(k1), Exa(k1) and E(k) apply (see Egs. 6.214-6.218).

According to the first similarity hypothesis, velocity statistics pertaining
to the universal equilibrium range have a universal form that is uniquely
determined by ¢ and v. Consequently, for K > kg;, E(x) is a universal
function of x, ¢ and v. Using € and v to non-dimensionalize x and FE(k),
simple dimensional analysis shows that this universal relation can be written

E(r) = (ev°)ip(rn)
= u%mp(/ﬁn), (6.233)

where ¢(xn) is a universal non-dimensional function the Kolmogorov spec-
trum function. Alternatively, if e and k are used to non-dimensionalize FE(k),
the relation is
2 s
E(k) =e3k 3U(kn), (6.234)

where U (kn) is the compensated Kolmogorov spectrum function. These uni-
versal functions are related by

colon

Y (kn) = (kn)3p(kn), (6.235)

and Eqgs. (6.233) and (6.234) apply for x > Kk, which corresponds to

2
k> (6.236)
EEI
The second similarity hypothesis applies to scales in the inertial sub-
range, i.e., n < £ K £y, or more precisely £,;, < £ < {5,;. The corresponding
range in wavenumber space is kg; < k < Kkpy, see Fig. 6.12: or in terms of

K7

1> kn>n/l, (6.237)
or 9 9
Kpih) = 7rn > K1) > 7rn = Rg’)- (6.238)
KDI EEI

In the inertial subrange, according to the second similarity hypothesis,
E(k) has a universal form uniquely determined by e, independent of v.
In Eq. (6.234) for E(k), v enters solely through 7. Hence the hypothesis
implies that as its argument xn tends to zero (i.e., kn < 1, cf. Eq. 6.237),
the function ¥ becomes independent of its argument, i.e., it tends to a
constant, C'. Hence the second similarity hypothesis predicts that in the
inertial subrange the energy spectrum function is
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Figure 6.12: Wavenumbers (on a logarithmic scale) at very high Reynolds number
showing the different ranges.

oot

E(k) = Cesr s, (6.239)

(i.e., Eq. 6.234 with ¥ = C.) This is the famous Kolmogorov f% spectrum,
and C is a universal Kolmogorov constant. Experimental data support the
value C = 1.5 (see e.g., Fig. 6.17 below, and Sreenivasan 1995).

According to the hypothesis, in the inertial subrange, ®;;(k) is an isotropic
tensor function and F(k) is a power-law spectrum (i.e., Eq. 6.228 with
p= %) Consequently, as shown in Section 6.5.1, the one-dimensional spec-

tra are given by
5

E]] (H]) = C]ﬁgn;g (6240)
and 5
Eoy(ri1) = Cledny ®, (6.241)
where
C) = 20 ~ 049, (6.242)
and
Cl = 3C1 = 22C =~ 0.65, (6.243)

(see Egs. 6.228 6.232).

Some properties of power-law spectra are given in Appendix G. There
is a direct correspondence between the form of Ey1(x1) (Eq. 6.240) and that
of the second-order velocity structure function

Drp(r) = Cyer)s, (6.244)

Wi
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Hence show that, for C = 1.5, the high-Reynolds-number asymptote
of ¢y, is
cr = (1.262C)* ~ 6.783. (6.252)

6.5.4 Dissipation Spectra

In this and the next four subsections, experimental data, the Kolmogorov
hypotheses, and the model spectrum are used to examine velocity spectra
in turbulent flows. In most of the relevant experiments, Taylor’s hypothesis
is invoked in order to obtain measurements of the one-dimensional spectra
Eij(k1).

Figure 6.14 is a compilation of measurements of E;;(k1), plotted with
Kolmogorov scaling. As with E(x) (Eq. 6.233), the Kolmogorov hypotheses
imply that the scaled spectrum ¢y = Ell(m)/(slﬁﬁ is a universal func-
tion of k1m, at sufficiently high Reynolds number, and for x; > kg;. The
data shown in Fig. 6.14 come from many different flows, with Taylor-scale
Reynolds numbers from 23 to 3, 180. It may be seen that for k1 > 0.1 all the
data lie on a single curve. The high-Reynolds-number data ;exhibit power-
law behavior for k1 < 0.1, with the extent of the power-law region generally
increasing with Ry. Thus the data are consistent with Fq; (/<;1)/(51/5)% being
a universal function of k17 for k1 > kg, with the departures from universal
behavior in Fig. 6.14 arising from the energy-containing range x < kz;. The
model spectra (also shown in Fig. 6.14 for different R)) appear to represent
the data quite accurately.

5

Compensated one-dimensional spectra (i.e., 7 F11 (k1)) with Kolmogorov
scaling are shown in Fig. 6.15 on a linear-log plot, which emphasizes the
dissipation range. For xin > 0.1, there is close agreement between mea-
surements in grid turbulence (R) = 60) and in a turbulent boundary layer
(R) &~ 600), again supporting the universality of the high wavenumber spec-
tra. The straight-line behavior evident in this plot for k117 > 0.3 corresponds
to exponential decay of the spectrum at the highest wavenumbers. Again,
the model spectrum represents the data accurately.

Also shown in Fig. 6.15 are the one-dimensional spectra deduced from
two alternative models for f,(kn). These are the exponential

fn(kn) = exp(—PBorn), (6.253)

where f3, is given by Eq. (6.258), and the Pao spectrum
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Figure 6.14: Measurements of one-dimensional longitudinal velocity spectra (sym-
bols), and model spectra (Eq. 6.246) for R, = 30, 70, 130, 300, 600 and 1500 (lines).
The experimental data are taken from Saddoughi and Veeravalli (1994) where refer-
ences to the different experiments are given. For each experiment, the final number
in the key is the value of Rj.
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Figure 6.15: Compensated one-dimensional velocity spectra. Measurements of
Comte-Bellot and Corrsin (1971) in grid turbulence at Ry = 60 (triangles), and of
Saddoughi and Veeravalli (1994) in a turbulent boundary layer at Ry = 600 (cir-
cles). Solid line, model spectrum Eq. (6.246) for R = 600; dashed line, exponential
spectrum Eq. (6.253); dot-dashed line, Pao’s spectrum Eq. (6.254).

falm) = exp(=3Crn]3), (6.254)

(see Pao 1965 and Section 6.6). It is evident from Fig. 6.15 that these
alternatives do not represent the data as well as the model spectrum.
Having established that the model spectrum describes the dissipation
range accurately, we now use it to quantify the scales of the dissipative
motions. Figure 6.16 shows the dissipative spectrum D(x) = 2vk2E(k)
according to the model for Ry = 600, and also the cumulative dissipation

K
o) = /0 D(x') dr’. (6.255)

The abscissa shows the wavenumber « and the corresponding wavelength
¢ = 27/k, both normalized by the Kolmogorov scale . Characteristic
wavenumbers and wavelengths obtained from these curves are given in Ta-
ble 6.1. Tt may be seen that the peak of the dissipation spectrum occurs at
xn = 0.26 corresponding to £/ ~ 24, while the centroid (where £(g ) = 3€)
occurs at k1 = 0.34 corresponding to ¢/n ~ 18. Thus the motions respon-
sible for the bulk of the dissipation (0.1 < k1 < 0.75, or 60 > £/n > 8) are



6.5. VELOCITY SPECTRA 245

201
1.8
1.6
D(K
(3) 1.4
Un 15 Figure 6.16: Dissi-
ol N pation  spectrum  (solid
€0k : e line) and cumulative dis-
é )0.8 sipation ~ (dashed line)
0.6 corresponding to the model

041 spectrum Eq. (6.246) for
02k Ry =600 : ¢ = 27/k is the
0.0 L | , | , , wavelength  corresponding
00 02 04 06 08 1.0 12 14 1.6 to wavenumber k.
KN
1 1 1 |
50 20 10 5 l/n

considerably larger than the Kolmogorov scale. (There is no inconsistency
between this observation and the Kolmogorov hypotheses: the hypotheses
imply that the size of the dissipative motions scale with 7, not that they are
equal to 7.) Based on these observations we take the demarcation length-
scale between the inertial and dissipative ranges to be £p; = 607. (The
significance of ¢p; is illustrated in Figs. 6.2 and 6.12.)

Exercise 6.33 Show that, at high Reynolds number, the expression
for dissipation obtained from integration of the model spectrum (Eq. 6.246)
is

Table 6.1: Characteristic wavenumbers and lengthscales of the dissipation
spectrum. (Based on the model spectrum Eq. 6.246 at Ry = 600.)

Defining wavenumbers kn | £/n

Peak of dissipation spectrum | 0.26 | 24
E0,x) = 0.1¢ 0.10 | 63
E(0,k) = 0.5e 0.34 18
E(or) = 0.9¢ 0.73 | 8.6




